在三角形ABC中,已知向量m=(2b-根号3c,cosC),向量n=(根号3a,cosA),且向量m平行

问题描述:

在三角形ABC中,已知向量m=(2b-根号3c,cosC),向量n=(根号3a,cosA),且向量m平行
在三角形ABC中,已知向量m=(2b-根号3c,cosC),向量n=(根号3a,cosA),且向量m平行.
1.求角A的大小.
2.求2cosB的平方+sin(A-2B)的最小值.

1
m=(2b-sqrt(3)c,cosC),n=(sqrt(3)a,cosA),m与n平行,则存在关系:m=kn
即:(2b-sqrt(3)c,cosC)=k(sqrt(3)a,cosA),即:2b-sqrt(3)c=ksqrt(3)a,cosC=kcosA
即:cosC/cosA=(2b-sqrt(3)c)/(sqrt(3)a),据正弦定理:
(2b-sqrt(3)c)/(sqrt(3)a)=(2sinB-sqrt(3)sinC)/(sqrt(3)sinA),故:
cosC/cosA=(2sinB-sqrt(3)sinC)/(sqrt(3)sinA),即:sqrt(3)sinAcosC=2cosAsinB-sqrt(3)cosAsinC
即:sqrt(3)sin(A+C)=2cosAsinB,即:sqrt(3)sinB=2cosAsinB,B是内角,故:sinB>0
故:cosA=sqrt(3)/2,即:A=π/6
2
2cosB^2+sin(A-2B)=1+cos2B+sinAcos2B-cosAsin2B=1+cos2B+cos2B/2-sqrt(3)sin2B/2
=1+sqrt(3)(sqrt(3)cosB/2-sin2B/2)=1+sqrt(3)cos(2B+π/6),因:A=π/6,故:B+C=5π/6
故:0cos(2B+π/6)取得最小值-1,故:2cosB^2+sin(A-2B)的最小值:1-sqrt(3)