如图,已知半径分别为1,2的两个同心圆,有一个正方形ABCD,其中点A,D在半径为2的圆周上,点B,C在半径为1的圆周上,求这个正方形的面积.
问题描述:
如图,已知半径分别为1,2的两个同心圆,有一个正方形ABCD,其中点A,D在半径为2的圆周上,点B,C在半径为1的圆周上,求这个正方形的面积.
答
如图,过O作OE⊥AD,交AD于点E,交BC于点F,连接OC,OD,则E、F分别为AD、BC的中点,设正方形边长为2x,故ED=x,又OD=2,∴由勾股定理得OE=4−x2,∴OF=|OE-EF|=|4−x2-2x|,在Rt△OCF中,OC=1,FC=x,根据勾股定理...