已知数列{an}的前n项和Sn=-n^2+9n+2,n属于N*

问题描述:

已知数列{an}的前n项和Sn=-n^2+9n+2,n属于N*
(1)判断{an}是否是等差数列
(2)设Rn=|a1|+|a2|+……+|an|,求Rn
(3)设bn=1/[n(12-an)],n属于N*,Tn=b1+b2+……+bn,是否存在最小的自然数n0,使得不等式Tn

1、a(n)=Sn-S(n-1) = -n^2+9n+2-(-(n-1)^2+9(n-1)+2) n>=2
=10-2n
a1 = S1 = 10
an 不是等差数列
2、当n>=5时 |an| = 2n-10
当n=5时,Rn = -Sn + 2*S4 = -n^2+9n+46
3、bn = 1/[n*(2n+2)] = (1/2)*[1/n - 1/(n+1)]
Tn = (1/2)*[1/1 - 1/2 + 1/2 -1/3 +……+1/n - 1/(n+1)]
= (1/2)*[1-1/(n+1)]
Tn (1/2)*[1-1/(n+1)] 1-1/(n+1) 要使对一切非零自然数n总成立,只要:
1-1/2 n0 > 8
存在n0,且最小为9