在康托尔证明有理数集是可数集中的疑问
问题描述:
在康托尔证明有理数集是可数集中的疑问
在康托尔证明有理数集是可数集的过程中,如果不是将分子与分母的和与所对应的自然数配起来,而是1配1 ,2配1/2,3配1/3.
这样配下来有理数集中还有剩余的元素
这不是表明有理数及有比自然数集更高的势吗?
答
两个集合是否等势,取决于是否能找到一种对应法则,使两集合元素一一对应.所以要证明等势,只需找到一个符合条件的对应关系即可;但要证明不等式,则需证明不存在符合条件的对应关系才行.(这一点,可以看一下无理数比有理...