设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.

问题描述:

设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.

设B=(B1,B2,.,Bs)
AB=A(B1,B2,.,Bs)=(AB1,AB2,.,ABs)=(0,0,.,0)
ABi=0
所以
B的列向量Bi都是AX=0的解.
以上过程步步可逆,所以
AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.