a,b,c为何实数时,a^2+b^2+c^2+4=ab+3b+2c,则a= ,b= ,c= .

问题描述:

a,b,c为何实数时,a^2+b^2+c^2+4=ab+3b+2c,则a= ,b= ,c= .

a^2+b^2+c^2+4=ab+3b+2c
a^2+b^2+c^2+4-(ab+3b+2c)=0
(a^2-ab+b^2/4)+(3b^2/4-3b+3)+(c^2-2c+1)=0
(a-b/2)^2+3(b/2-1)^2+(c-1)^2=0
a=b/2,b/2=1,c=1
a=1,b=2,c=1