已知向量OA=(2asin²x,a),向量OB=(-1,2√3sinxcosx+1),0为坐标原点,a≠0
问题描述:
已知向量OA=(2asin²x,a),向量OB=(-1,2√3sinxcosx+1),0为坐标原点,a≠0
设f(x)=向量OA×向量OB+b,b>a.
(1)若a>0,写出函数y=f(x)的单调递增区间
(2)若函数y=f(x)的定义域为(π/2,π),值域为(2,5),求实数a与b的值
答
1
f(x)=-2asin²x+2√3asinxcosx+a+b
=(1-2sin²x)a+√3asin2x+b
=acos2x+√3asin2x+b
=2asin(2x+π/6)+b
g(x)=sinx单增区间[2kπ-π/2,2kπ+π/2]
2kπ-π/2≤2x+π/6≤2kπ+π/2
kπ-π/3≤x≤kπ+π/6
2
π/2
2x+π/6=7π/6,x=π
f(x)min=f(2π/3)=-2a+b=2
f(x)max