已知集合A={x||4x-3|>1},B={x|x²-(2a-1)x+a(a+1)>0},若B∈A,求实数a的取值范围.
问题描述:
已知集合A={x||4x-3|>1},B={x|x²-(2a-1)x+a(a+1)>0},若B∈A,求实数a的取值范围.
答
|4x-3|>1
4x-31
x1
所以,集合A=(-∞,1/2)U(1,+∞)
x²-(2a-1)x+a(a+1)>0
(x-a)[x-(a+1)]>0
xa+1
所以,集合B=(-∞,a)U(a+1,+∞)
B包含于A,则:
a≦1/2
a+1≧1
得:0≦a≦1/2
即实数a的取值范围是:0≦a≦1/2