已知向量a=(cos(3x/2),sin(3x/2)),b=(cos(x/2),-sin(x/2)),且x∈[0,π/2]
问题描述:
已知向量a=(cos(3x/2),sin(3x/2)),b=(cos(x/2),-sin(x/2)),且x∈[0,π/2]
(1)求向量a乘以向量b
(2)求|a+b|;
(3)求函数f(x)=a*b-|a+b|的最小值及此时的x值.
答
(1) a.b=cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)=cos(2x)(2) |a+b|=√{[cos(3x/2)+cos(x/2)]^2+[sin(3x/2)-sin(x/2)]^2}=√[2+2cos(3x/2)cos(x/2)-2sin(3x/2)sin(x/2)]=√[2+2cos(2x)]=2cos(x)(3) f(x)=cos(2x)-2cos(x...为什么=√[2+2cos(2x)]=2cos(x)用倍角公式 cos(2x)=2[cos(x)]^2-1,代入即得。