函数求导.y=arctan(x+1)/(x-1)

问题描述:

函数求导.y=arctan(x+1)/(x-1)

y=arctan(x+1)/(x-1)
y'=1/[1+(x+1)^2/(x-1)^2]*[(x+1)/(x-1)]'
=1/[1+(x+1)^2/(x-1)^2]*[(x-1)-(x+1)]/(x-1)^2
=-2/[(x+1)^2+(x-1)^2]
=-1/(x^2+1)=1/[1+(x+1)^2/(x-1)^2]*[(x-1)-(x+1)]/(x-1)^2=-2/[(x+1)^2+(x-1)^2]这部能不能详细点复合函数求导法则,一步步代就可以了