[急]求函数y=ax^2-2a^2x+1(a>0)在区间[-1,2]上的最值.
问题描述:
[急]求函数y=ax^2-2a^2x+1(a>0)在区间[-1,2]上的最值.
过程!
答
对称轴是x=a 由于a>0 所以在对称轴左边是减 右边是增
1 当a≥2时
在[-1,2] 为减函数 所以最值在2端点取得
当x=-1时 y=a+2a^2+1
当x=2时 y=4a-4a^2+1
所以最大值为2a^2+a+1 最小值为-4a^2+4a+1
2 当0<a<2时
函数的最小值在x=a取得 最大值在x=-1 x=2中取得
x=a时 y=a^3-2a^3+1=-a^3+1
x=-1时 y=a+2a^2+1
x=2时 y=4a-4a^2+1
2a^2+a+1-(-4a^2+4a+1)=6a^2-3a=3a(2a-1)>0
所以函数最小值为-a^3+1 最大值为2a^2+a+1