化简[(x^2+y^2)^2-4x^2y^2]÷(x+y)^2,其中x=1,y=3/2
问题描述:
化简[(x^2+y^2)^2-4x^2y^2]÷(x+y)^2,其中x=1,y=3/2
答
[(x^2+y^2)^2-4x^2y^2]÷(x+y)^2=[(x^2+y^2)^2-(2xy)^2]÷(x+y)^2=[(x^2+y^2+2xy)(x^2+y^2-2xy)]÷(x+y)^2,[a²-b²=(a+b)(a-b)]=[(x+y)^2(x-y)^2]÷(x+y)^2=(x-y)^2=(1-3/2)²=(-1/2)²=1/4...