已知 向量OA=1向量OB=根号2.OAOB=0,点C在角AOB内,且等于45度,设向量OC=mOA+nOB,则m/n等于
问题描述:
已知 向量OA=1向量OB=根号2.OAOB=0,点C在角AOB内,且等于45度,设向量OC=mOA+nOB,则m/n等于
答
(OC)^2=(mOA+nOB)^2=(mOA)^2+(nOB)^2+2mnOA*OB=m^2+2n^2∴|OC|=√(m^2+2n^2)OC*OA=|OA|*|OC|*cos45°=(√2/2)*√(m^2+2n^2)=(mOA+nOB)*OA=mOA^2+nOA*OB=m即√2(m^2+2n^2)=2m∴m^2+2n^2=2m^2∴m/n=±√2