抛物线y2=2px(p>0)焦点为F,准线为l,经过F的直线与抛物线交于A、B两点,交准线于C点,点A在x轴上方,AK⊥l,垂足为K,若|BC|=2|BF|,且|AF|=4,则△AKF的面积是(  ) A.4 B.33 C.43 D.8

问题描述:

抛物线y2=2px(p>0)焦点为F,准线为l,经过F的直线与抛物线交于A、B两点,交准线于C点,点A在x轴上方,AK⊥l,垂足为K,若|BC|=2|BF|,且|AF|=4,则△AKF的面积是(  )
A. 4
B. 3

3

C. 4
3

D. 8

如图过点B作准线的垂线,交准线于点D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠CBD=60°,
又AF=AK,
故△AKF为等边三角形.等边三角形△AKF的边长AK=4,
∴△AKF的面积是

1
2
×4×4sin60°=4
3

故选C.