古希腊数学家丢番图(公元3~4世纪)的墓碑上记栽着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)儿子死时丢番图的年龄.

问题描述:

古希腊数学家丢番图(公元3~4世纪)的墓碑上记栽着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:
(1)丢番图的寿命;
(2)丢番图开始当爸爸时的年龄;
(3)儿子死时丢番图的年龄.

设丢番图的寿命为x岁,
由题意得:

1
6
x+
1
12
x+
1
7
x+5+
1
2
x+4=x,
解得:x=84,
1
6
×84+
1
12
×84+
1
7
×84+5=38,即他38岁时有了儿子.
他儿子活了
1
2
x=42岁.
84-4=80岁.
答:丢番图的寿命是84岁;丢番图开始当爸爸时的年龄是38;儿子死时丢番图的年龄是80岁.
答案解析:设丢番图的寿命为x岁,则根据题中的描述他的年龄=
1
6
x的童年+生命的
1
12
x+
1
7
x+5年+儿子的年龄+4年,可列出方程,即可求解.
考试点:一元一次方程的应用.
知识点:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出丢番图的年龄的表达式,根据等量关系,列出方程再求解.