一个四位数各个数位上数字都不相同,并且各个数位上的数字之和为14,能写出几个这样的数?

问题描述:

一个四位数各个数位上数字都不相同,并且各个数位上的数字之和为14,能写出几个这样的数?

将14分解,有以下5种状况:
1+2+3+8,1+2+4+7,1+2+5+6,1+3+4+6,2+3+4+5
如果考虑数字中有1位是0的情况下,又有以下8种情况:
0+1+4+9,0+1+5+8,0+1+6+7,0+2+3+9,0+2+4+8,0+2+5+7,0+3+4+7,0+3+5+6
在没有0的时候,是5种情况,每种情况是4个数排4个位置,所以
共有 4×3×2×1×5 = 120 个.
在有0的情况下,有8种情况,但0不能在首位,所以
共有 3×3×2×1×8 = 144 个.
两者结合起来,一共可以写出120+144 = 264 个符合条件的数.