已知两条直线l1:x+y-2=0和l2:2x-y=5=0,证明直线l:ax+y-2a+3=0经过直线l1和l2交点的充要条件是a=2
问题描述:
已知两条直线l1:x+y-2=0和l2:2x-y=5=0,证明直线l:ax+y-2a+3=0经过直线l1和l2交点的充要条件是a=2
答
第二个方程写错了吧?应该是2x-y+5=0吧?联立l1、l2,消去y,解得x=-1,9再代回任一方程得y=3于是得交点坐标(-1,3).代到l3中求得a=22x-y+5=0再反过来证必要条件吧