微分方程解答2ydx-3xy^2dx-xdy=0(化成全微分)y"=(y')^3+y'(高阶方程)

问题描述:

微分方程解答
2ydx-3xy^2dx-xdy=0(化成全微分)
y"=(y')^3+y'(高阶方程)

1.∵2ydx-3xy²dx-xdy=0 ==>2xydx-3x²y²dx-x²dy=0 (等式两端同乘以x)==>yd(x²)-x²dy=y²d(x³)==>(yd(x²)-x²dy)/y²=d(x³)==>d(x²/y)=d(x³)∴x&...