如图,AC,BD,EF相交于O,且AO=CO,BO=DO,EO=OF,求证△ABE≌△CDF
问题描述:
如图,AC,BD,EF相交于O,且AO=CO,BO=DO,EO=OF,求证△ABE≌△CDF
答
OA=OC,OD=OB,角AOB=角COD,所以△AOB≌△COD 则AB=CD同理:OA=OC,OE=OF,角AOE=角COF,所以△AOE≌△COF 则AE=CFOB=OD,OE=OF,角BOE=角DOF,所以△BOE≌△DOF 则BE=DF因为 AB=CD AE=CF BE=DF所以 △ABE≌△CDF...