已知A.B.C三点共线,证明向量ob=x乘以向量oa+y乘以向量oc,且x+y=1
问题描述:
已知A.B.C三点共线,证明向量ob=x乘以向量oa+y乘以向量oc,且x+y=1
只需解释为什么x+y=1,
已知向量OA,向量OB,向量OC为不平行向量
答
OB=xOA+yOC即:AB=OB-OA=xOA+yOC-OA=(x-1)OA+yOCAC=OC-OAA、B、C三点共线,即:AB、AC共线即:AB=kAC,即:(x-1)OA+yOC=k(OC-OA)即:(x-1+k)OA+(y-k)OC=0OAOC不共线,故:k=y即:1-x=k=y,即:x+y=1--------------------...