已知f(x)是定义在【-1,1】上的奇函数,若a,b属于【-1,1】且a+b不等于0时,有{f(a)已知f(x)是定义在【-1.1】上的奇函数,当a,b属于【-1.1】且a+b不等于0,有 [f(a)+f(b)]/(a+b) > 0(1)证明f(x)在【-1,1】上为增函数(2)解不等式F(3X^2)+F(-1-2X)>0
问题描述:
已知f(x)是定义在【-1,1】上的奇函数,若a,b属于【-1,1】且a+b不等于0时,有{f(a)
已知f(x)是定义在【-1.1】上的奇函数,当a,b属于【-1.1】且a+b不等于0,有 [f(a)+f(b)]/(a+b) > 0
(1)证明f(x)在【-1,1】上为增函数(2)解不等式F(3X^2)+F(-1-2X)>0
答
证明:
(1)令-1≤x10
f(x2)-f(x1)=f(x2)+f(-x1)
那么[f(x2)+f(x1)]/(x2-x1)>0
那么f(x2)>f(x1)
所以f(x1)在[-1,1]上是增函数
(2)原式就是:f(3X^2)+f(-1-2X)>0
即:f(3x^2)-f(2x+1)>0
f(x)是奇函数,那么等价于:
3x^2≤1
|2x+1|≤1
3x^2>2x+1
解方程祖有:
-(3)^(-1/2)≤x