函数的连续性问题
问题描述:
函数的连续性问题
设函数有二阶连续的导数,且f'(0)=0,lim(x->0)f''(x)/|x|=1,则下列说法正确的是:
A.f(0)是f(x)的极小值
B.(0,f(0))是曲线y=f(x)的拐点
C.f(0)不是f(x)的极小值.(0,f(0))也不是是曲线y=f(x)的拐点
我不明白如果lim(x->0)f''(x)/|x|=1则会有lim(x->0)f''(x)=lim(x->0)|x|=0,再根据函数的连续性可知f''(0)=lim(x->0)f''(x)=0
答
如果lim(x->0)f''(x)/|x|=1,则证明f''(x)与|x|是同阶无穷小量,当f''(x)趋于零时其值必为0,因为假设f''(x)不为0,则f''(x)必为一非零常数k.一个非零常数除以0其值为无穷,与其值为1矛盾,所以f''(x)当x->0时必为0.又因为...