有界闭区间上的连续函数必一致连续
问题描述:
有界闭区间上的连续函数必一致连续
请证明之.
答
任给e>0,由连续函数定义,对任意[a,b]中的x,有相应的dx>0
只要y属于[a,b]且在(x-dx,x+dx)内,就有|f(y)-f(x)|
令d=min(dx1,...,dxn),
则对任意[a,b]中的x,只要y属于[a,b]且在(x-d,x+d)内,就有|f(y)-f(x)|