解微分方程y(x^2-xy+y^2)+x(x^2+xy+y^2)dy/dx=0答案yx=ce^[-arctan(y/x)]
问题描述:
解微分方程y(x^2-xy+y^2)+x(x^2+xy+y^2)dy/dx=0
答案yx=ce^[-arctan(y/x)]
答
解微分方程y(x^2-xy+y^2)+x(x^2+xy+y^2)dy/dx=0
答案yx=ce^[-arctan(y/x)]