因式分解:-4x^2y^2+4xy+2
问题描述:
因式分解:-4x^2y^2+4xy+2
答
令-2(x²y²-2xy-1)=0
看做是关于y的方程,则解得y=(1±√2)x,
所以原式=-2[y-(1-√2)x][y-(1+√2)x]
答
-4x^2y^2+4xy+2
=-4x^2y^2+4xy-1+3
=3-(2xy-1)^2
=(√3+2xy-1)(√3-2xy+1)
=-(2xy+√3-1)(2xy-√3-1)
答
-4x^2y^2+4xy+2
=-(4x^2y^2-4xy+1)+3
=3-(2xy-1)^2
=(根号3+2xy-1)(根号3-2xy+1)