如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE (1)求证:四边形OGCH是平行四边形; (2)当

问题描述:

如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是

AB
上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE

(1)求证:四边形OGCH是平行四边形;
(2)当点C在
AB
上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;
(3)求证:CD2+3CH2是定值.

(1)证明:连接OC交DE于M.由矩形得OM=CM,EM=DM.∵DG=HE.∴EM-EH=DM-DG.∴HM=GM.∴四边形OGCH是平行四边形.(2)DG不变.在矩形ODCE中,∵DE=OC=3.∴DG=1.(3)证明:设CD=x,则CE=9−x2.过C作CN⊥DE于N....