已知函数f(x)=cos^4+2√3sinxcosx-sin^41) 求f(x)的最小正周期2)若x∈[0,π/2] 求f(x)的最大值、最小值
问题描述:
已知函数f(x)=cos^4+2√3sinxcosx-sin^4
1) 求f(x)的最小正周期
2)若x∈[0,π/2] 求f(x)的最大值、最小值
答
f(x)=(cosx)^4+2√3sinxcosx-(sinx)^4
=(cosx)^4-(sinx)^4+√3sin2x
=[(cosx)^2-(sinx)^2][(cosx)^2+(sinx)^2]+√3sin2x
=cos2x+√3sin2x
=2sin(2x+π/3)
1)f(x)的最小正周期:2π/2=π
2)x∈[0,π/2]
2x+π/3∈[π/3,4π/3]
f(x)最大值为2
最小值为-√3