f(x)是定义在(0,+∞)上的增函数,对于x,y∈(0,+∞)满足f(x+y0=f(x)+f(y)

问题描述:

f(x)是定义在(0,+∞)上的增函数,对于x,y∈(0,+∞)满足f(x+y0=f(x)+f(y)
(1)求证1.当x∈〔1,+∞)时,f(x)大于等于0
2.

由给出式:f(1/2+1/2)=f(1/2)+f(1/2)
f(1)-f(1/2)=f(1/2)
因其是定义在(0,+∞)上的增函数
故f(1/2)=f(1)-f(1/2)>0
故f(1)>0
因其是定义在(0,+∞)上的增函数,故当x∈[1,+∞)时,f(x)≥0