怎样证明一组勾股数组有一个数是3的倍数
问题描述:
怎样证明一组勾股数组有一个数是3的倍数
越快越好,10分钟内给出答案者给50分
答
勾股数a、b、c三数中至少有一个是3的倍数.
证明:由公式
a=n2-m2
b=2mn (ma,c-a>0,c+a>0,c+a>b.
所以,b/(c+a)=(c-a)/b=m/n成立,且m0,为一有理数.
故有公式
a=k(n2-m2)
A:b=2kmn
c=(n2+m2)
为保证公式中a、b、c是正整数,k只能取使a、b、c为正整数的值,要使a、b、c互质,取k=1,由于m、n均为奇数时,n2-m2,n2+m2,2mn都有因数2,故除了m,n互质外,还要加一个条件:m,n奇偶不同,由此可得更简便的公式:
a=n2-m2
B:b=2mn (mm的正整数,则得到的a、b、c仍是勾股数组,而不一定是基础勾股数组.