如图,三棱柱ABC-A1B1 C1中,侧棱AA1⊥平面ABC,AB=BC=AA1=2,AC=22,E,F分别是A1B,BC的中点. (Ⅰ)证明:EF∥平面AAlClC; (Ⅱ)证明:AE⊥平面BEC.
问题描述:
如图,三棱柱ABC-A1B1 C1中,侧棱AA1⊥平面ABC,AB=BC=AA1=2,AC=2
,E,F分别是A1B,BC的中点.
2
(Ⅰ)证明:EF∥平面AAlClC;
(Ⅱ)证明:AE⊥平面BEC.
答
(I)连接A1C,则
∵△BA1C中,E,F分别是A1B,BC的中点.
∴EF∥A1C
∵EF⊄平面A AlClC,A1C⊂平面A AlClC,
∴EF∥平面A AlClC;
(II)∵△ABC中,AB=BC=2,AC=2
,
2
∴AB2+BC2=8=AC2,可得AB⊥BC
∵AA1⊥平面ABC,BC⊂平面ABC,∴AA1⊥BC
∵AB、AA1是平面AA1B1B内的相交直线,∴BC⊥平面AA1B1B
∵AE⊂平面AA1B1B,∴AE⊥BC
∵△AA1B中,AB=AA1=2,∴AE⊥A1B
∵A1B、BC是平面A1BC内的相交直线,
∴AE⊥平面A1BC,即AE⊥平面BEC.