化简代数式x2−1x2+2x÷x−1x,并判断当x满足不等式组x+2<12(x−1)>−6时该代数式的符号.
问题描述:
化简代数式
÷
x2−1
x2+2x
,并判断当x满足不等式组x−1 x
时该代数式的符号.
x+2<1 2(x−1)>−6
答
x2−1x2+2x÷x−1x=x2−1x2+2x•xx−1=(x −1)(x+1)x(x +2)•xx−1=x+1x+2,不等式组x+2<1①2(x−1)>−6②,解不等式①,得x<-1.解不等式②,得x>-2.∴不等式组x+2<12(x−1)>−6的解集是-2<x<-1...