(x+2/x^2-x-6)-(2x/x^2-3x)-(x+1/x^2-6x+9)

问题描述:

(x+2/x^2-x-6)-(2x/x^2-3x)-(x+1/x^2-6x+9)

=(x+2)/(x-3)(x+2)-2x/x(x-3)-(x+1)/(x-3)²
=1/(x-3)-2/(x-3)-(x+1)/(x-3)²
=-1/(x-3)-(x+1)/(x-3)²
=[-(x-3)-(x+1)]/(x-3)²
=(-2x+2)/(x-3)²
=(2-2x)/(x-3)²

原式=(x+2)/(x+2)(x-3)-2x/x(x-3)-(x+1)/(x-3)²=1/(x-3)-2/(x-3)-(x+1)/(x-3)²=-1/(x-3)-(x+1)/(x-3)²=-[(x-3)+(x+1)]/(x-3)²=-(2x-2)/(x²-6x+9)