如图,A是△BCD所在平面外一点,∠ABD=∠ACD=90°,AB=AC,E是BC的中点
问题描述:
如图,A是△BCD所在平面外一点,∠ABD=∠ACD=90°,AB=AC,E是BC的中点
求证
△AED是钝角三角形
图如:
等级不够传不上图来
答
证明:∵AB=AC,E是BC的中点,∴BC⊥AE,
在△ABD和△ACD中,∠ABD=∠ACD=90°,AB=AC,AD为公共边,
∴△ABD≌△ACD,
∴BD=DC.
又∵E是BC边的中点,
∴BC⊥ED,
因AE^2=AB^2-(BC/2)^2,DE^2=DC^2-(BC/2)^2=BD^2-(BC/2)^2,AD^2=AB^2+BD^2.
所以AE^2+DE^2- -AD^2= -BC^2/2.
∴cos∠AED<0,即△AED是钝角三角形.