y=f(x)是R上的增函数,y=f(x-2010)的图像关于(2010,0)对称,若x,y满足f(x2-6x)+f(y2-8y+24)

问题描述:

y=f(x)是R上的增函数,y=f(x-2010)的图像关于(2010,0)对称,若x,y满足f(x2-6x)+f(y2-8y+24)

数学人气:262 ℃时间:2020-05-19 07:19:25
优质解答
y=f(x-2010)的图像关于(2010,0)对称
即y=f(x)关于原点对称,所以是奇函数
f(x2-6x)+f(y2-8y+24)f(x2-6x)因为是增函数
所以x2-6x配方得(x-3)^2+(y+4)^2<1
即圆心为(3,-4),半径为1的圆的内部
x^2+y^2就是点到原点的距离平方
圆心到原点距离为5,半径为1
所以x^2+y^2最大为6的平方=36,最小为4的平方=16
我来回答
类似推荐

y=f(x-2010)的图像关于(2010,0)对称
即y=f(x)关于原点对称,所以是奇函数
f(x2-6x)+f(y2-8y+24)f(x2-6x)因为是增函数
所以x2-6x配方得(x-3)^2+(y+4)^2<1
即圆心为(3,-4),半径为1的圆的内部
x^2+y^2就是点到原点的距离平方
圆心到原点距离为5,半径为1
所以x^2+y^2最大为6的平方=36,最小为4的平方=16