点P在椭圆十六分之X方加九分之Y方等于一上,求点P到直线3X-4Y=24的最大距离和最小距离
问题描述:
点P在椭圆十六分之X方加九分之Y方等于一上,求点P到直线3X-4Y=24的最大距离和最小距离
答
点P在椭圆:x²/16+y²/9=1上
椭圆的参数方程为
x=4cost
y=3sint
设点P(4cost,3sint)
点P到直线3X-4Y=24为:
d=|3*(4cost)-4*(3sint)-24|/√(3²+4²)
=12|cost-sint-2|/5
=(12/5)|√2(√2cost /2 - √2sint /2)-√2|
=12√2/5|cos(π/4)cost-sin(π/4)sint-√2]
=12√2/5[√2-cos(t+π/4)]
=24/5-12√2cos(t+π/4) /5
所以:24/5-12√2/5≤d≤24/5+12√2/5
点P到直线3X-4Y=24的最大距离24/5+12√2/5和最小距离24/5-12√2/5