数列{an}首项a1=3通项an与前n项的Sn之间满足2an=SnS(n-1) (n>=2)(1)求证{1/Sn}为等差数列(2)试求数列{an}通项公式

问题描述:

数列{an}首项a1=3通项an与前n项的Sn之间满足2an=SnS(n-1) (n>=2)
(1)求证{1/Sn}为等差数列(2)试求数列{an}通项公式

n>=2

(1)因为an=Sn-S(n-1)
所以2[Sn-S(n-1)]=SnS(n-1),即Sn-S(n-1)/SnS(n-1)=1/2
分离常数得,1/S(n-1) -1/Sn=1/2
两边同除以负1得 1/Sn-1/S(n-1) =负1/2
所以{1/Sn}成等差数列,首项为1/3,公差为负1/2
(2)由(1)得1/Sn=5/6-n/2
所以Sn=6/5-2n
所以an={-4/5 n=1
-2 n大于等于2}

(1) an = Sn - S(n-1)
2(Sn-S(n-1)) = SnS(n-1)
Sn = 2S(n-1) / (2-S(n-1))
1/Sn = 1/S(n-1) - 1/2
所以 {1/Sn}为 首项是1/3,公差是 -1/2 的等差数列
(2)1/Sn 的通项公式是 1/Sn = 1/3 + (-1/2)*(n-1) = -1/2 n + 5/6
Sn = 6/(5-3n)
an = 1/2 ( 6/(5-3n) * 6/(8-3n)),n>=2