一个平行四边形被分成甲、乙、丙三个三角形.已知甲的面积比乙的面积多12平方厘米,乙的面积与丙的面积比是2:3,这个平行四边形的面积是______平方厘米.

问题描述:

一个平行四边形被分成甲、乙、丙三个三角形.已知甲的面积比乙的面积多12平方厘米,乙的面积与丙的面积比是2:3,这个平行四边形的面积是______平方厘米.

12÷(1-

2
2+3
)×2
=12÷
3
5
×2
=40(平方厘米)
答:平行四边形的面积是40平方厘米.
故答案为:40.
答案解析:根据图可知甲的面积等于乙和丙面积的和,等于平行四边形面积的一半,乙的面积与丙的面积比是2:3,乙的面积就是甲面积的
2
2+3
,甲的面积就是12÷(1-
2
2+3
)=20,进而可求出平行四边形的面积.
考试点:平行四边形的面积;比的应用.
知识点:本题的关键是让学生理解:甲的面积等于乙和丙面积的和,等于平行四边形面积的一半.