已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列已知F(x)=Logax(a大于0且不等于1),设F(a1),f(a2),...f(an)(n属于N*)是首项为4,公差为2的等差数列.(1)设a为常数求证{an}成等比数列(2)若bn=an*f(an),(bn)的前n项和为sn 当a1=根号2时 求sn
问题描述:
已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列
已知F(x)=Logax(a大于0且不等于1),设F(a1),f(a2),...f(an)(n属于N*)是首项为4,公差为2的等差数列.(1)设a为常数求证{an}成等比数列
(2)若bn=an*f(an),(bn)的前n项和为sn 当a1=根号2时 求sn
答
...
答
F(x)=Logax(a大于0且不等于1),f(an) 公差为2的等差数列, 所以得 Loga(a2) - Loga(a1) =2 Loga(a3) - Loga(a2) =2 ……
Loga(an) - Loga(an-1) = 2 累加得到 Loga(an) - 4 =2n 又得 an=a^(2n+2), a是常数
所以{an}是以公比为a² 的等比数列
答
1) f(an)=4+2(n-1)= 2n+2log(a,an)=2n+2an=a^(2n+2),a是常数a(n+1) /an =a² 所以 ,{an}成等比数列;2)a1 =根号2,a^4 =根号2,a=2^(1/8)bn = an*f(an) = (2n+2)* a^(2n+2) = (2n+2)*2^[(n+1)/4]利用错位相减法,...