△ABC为等腰直角三角形,AB=AC,D为斜边BC的中点,E,F为AB,AC上的点,且DE垂直与DF,若BE=12,CF=5,1,判断三角形DEF的形状,并说明理由.2,求三角形DEF的面积.

问题描述:

△ABC为等腰直角三角形,AB=AC,D为斜边BC的中点,E,F为AB,AC上的点,且DE垂直与DF,若BE=12,CF=5,
1,判断三角形DEF的形状,并说明理由.2,求三角形DEF的面积.

望采纳,谢谢
如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=8,CF=6.
(1)求证:△AED≌△CFD;
(2)求△DEF的面积.证明:(1)∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠EDA=90°,
∴∠EDA=∠CDF
在△AED与△CFD中,∵∠EAD=∠CDF,AD=CD,∠EAD=∠C,
∴△AED≌△CFD.
(2)由(1)知:AE=CF=6,同理AF=BE=8.
∵∠EAF=90°,
∴EF2=AE^2+AF^2=6^2+8^2=100.
∴EF=10,
又∵DE=DF,
∴△DEF为等腰直角三角形,DE=DF= 5根号2,
∴S△DEF= 1/2× (5根号2)2=25.

有图吗

1.因为DE垂直DF,所以三角形DEF是直角三角形