已知(a-1)的算术平方根加上(ab-2)的平方等于0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+一直加到1/(a+2004)
问题描述:
已知(a-1)的算术平方根加上(ab-2)的平方等于0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+一直加到1/(a+2004)
答
由已知得(a-1)的算术平方根=0(ab-2)^2=0即a=1,b=21/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+…+1/(a+2004)(b+2004)=1/1*2+1/2*3+1/3*4)+…+1/2005*2006=(1-1/2)+(1/2-1/3)+(1/3-1/4))+…+(1/2005-1/2006)=1-1/2006=2005/2...