怎样计算n的5次方减1除以n减1

问题描述:

怎样计算n的5次方减1除以n减1

x^5-y^5=(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4),所以n^5-1除以n-1等于n^4+n^3+n^2+n+1

n^5-1=(n-1)(n^4+n^3+n^2+n+1)
(n^5-1)/(n-1)=n^4+n^3+n^2+n+1