若向量OA={3,1}向量OB={-1,2}.向量OC⊥向量OB,向量BC‖向量OA.又知向量OD+向量OA=向量OC,求:向量OD

问题描述:

若向量OA={3,1}向量OB={-1,2}.向量OC⊥向量OB,向量BC‖向量OA.又知向量OD+向量OA=向量OC,求:向量OD

设OC=(m,n)
则BC=OC-OB=(m+1,n-2)
因为BC//OA,所以有
3×(n-2)-1×(m+1)=0
因为OC⊥OB,所以有
-1×m+2×n=0
化简等式得
3n-m=7
m=2n,解得m=14,n=7
所以OC=(14,7)
因为OD+OA=OC
所以OD=OC-OA=(14,7)-(3,1)=(11,6)
向量OD=(11,6)