分解因式:(1)a³-4a (2)(x²+y²)²-4x²y² (3)(a+b)²-10a-10b+25

问题描述:

分解因式:(1)a³-4a (2)(x²+y²)²-4x²y² (3)(a+b)²-10a-10b+25

1=a(a+2)(a-2)
2=(x2-y2)^2
3=(a+b-5)^2

(1)a^3-4a
=a(a^2-4)
=a(a+2)(a-2)
(2)(x^2+y^2)^2-4x^2y^2
=(x^2+y^2)^2-(2xy)^2
=(x^2+2xy+y^2)(x^2-2xy+y^2)
=(x+y)^2(x-y)^2
(3)(a+b)^2-10a-10b+25
=(a+b)^2-10(a+b)+5^2
=(a+b-5)^2

a³-4a=a(a²-4)=a(a+2)(a-2)
(x²+y²)²-4x²y² =(x²+y²-2xy)(x²+y²+2xy)=(x-y)²(x+y)²=(x-y)(x-y)(x+y)(x+y)
(a+b)²-10a-10b+25=(a+b)²-10(a+b)+25=(a+b-5)²=(a+b-5)(a+b-5)

a³-4a
=a(a²-4)
=a(a+2)(a-2)
(x²+y²)²-4x²y²
=x^4+2x²y²+y^4-4x²y²
=(x²-y²)²
=(x²+y²)²(x²-y²)²
(a+b)²-10a-10b+25
=(a+b)²-10(a+b)+25
=(a+b-5)²
望采纳

(1)a³-4a
=a(a²-4)
=a(a+2)(a-2)
(2)(x²+y²)²-4x²y²
=x^4+2x²y²+y^4-4x²y²
=x^4-2x²y²+y^4
=(x²-y²)²
(3)(a+b)²-10a-10b+25
=(a+b)²-10(a+b)+25
=(a+b-5)²

(1)a³-4a
=a(a²-4)
=a(a+2)(a-2)
(2)(x²+y²)²-4x²y²
=(x²+y²+2xy)(x²+y²-2xy)
=(x+y)²(x-y)²
(3)(a+b)²-10a-10b+25
=(a+b)²-10(a+b)+25
=(a+b-5)²