若a+b+c=0,1a+1+1b+2+1c+3=0,那么(a+1)2+(b+2)2+(c+3)2=______.

问题描述:

若a+b+c=0,

1
a+1
+
1
b+2
+
1
c+3
=0,那么(a+1)2+(b+2)2+(c+3)2=______.

∵a+b+c=0,
∴(a+1)+(b+2)+(c+3)=6,
两边平方得(a+1)2+(b+2)2+(c+3)2+2[(a+1)(b+2)+(a+1)(c+3)+(b+2)(c+3)]=36,
又由

1
a+1
+
1
b+2
+
1
c+3
=0去分母,得
(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,
∴(a+1)2+(b+2)2+(c+3)2=36.
故答案为:36.
答案解析:由a+b+c=0得,(a+1)+(b+2)+(c+3)=6,两边平方得(a+1)2+(b+2)2+(c+3)2+2(a+1)(b+2)+2(a+1)(c+3)+2(b+2)(c+3)=36,再由
1
a+1
+
1
b+2
+
1
c+3
=0
去分母,得(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,代入上式即可.
考试点:分式的混合运算.
知识点:本题考查了分式的混合运算.关键是将已知等式变形,得出与所求结果相同的结构,采用两边平方的方法求解.