2010年秋冬北方严重干早,凤凰社区人畜饮用水紧张.毎天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂毎天最多可调出80吨,乙厂毎天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表: 到凤凰社区供水点的路程(千米) 运费(元/吨•千米)甲厂 20 12乙厂 14 15(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W元.试写出W关于与x的函数关系式,怎样安排调运方案才能使毎天的总运费最省?
问题描述:
2010年秋冬北方严重干早,凤凰社区人畜饮用水紧张.毎天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂毎天最多可调出80吨,乙厂毎天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:
到凤凰社区供水点的路程(千米) | 运费(元/吨•千米) | |
甲厂 | 20 | 12 |
乙厂 | 14 | 15 |
(2)设从甲厂调运饮用水x吨,总运费为W元.试写出W关于与x的函数关系式,怎样安排调运方案才能使毎天的总运费最省?
答
(1)设从甲厂调运了x吨饮用水,从乙厂调运了y吨饮用水,由题意得:20×12x+14×15y=26700x+y=120,解得:x=50y=70,∵50<80,70<90,∴符合条件,∴从甲、乙两水厂各调运了50吨、70吨饮用水;(2)从甲厂调运...
答案解析:(1)设从甲厂调运了x吨饮用水,从乙厂调运了y吨饮用水,然后根据题意毎天需从社区外调运饮用水120吨与某天调运水的总运费为26700元列方程组即可求得答案;
(2)首先根据题意求得一次函数W=20×12x+14×15(120-x),又由甲厂毎天最多可调出80吨,乙厂毎天最多可调出90吨,确定x的取值范围,则由一次函数的增减性即可求得答案.
考试点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.
知识点:此题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.