1+2+3+4+5+6.+999999

问题描述:

1+2+3+4+5+6.+999999

490000*1000000+500000=490000000000+500000= 490000500000

(1+999999)+(2+999992)+(3+999997)+.........

1+2+3+4+5+6.......+999999=999999×(999999+1)/2=999999×500000=499999500000

(1+999999)×999999再总体除以2

499999500000

1+2+3+4+5+6.......+999999
=999999×(999999+1)/2
=999999×500000
=499999500000
考察的知识点:等差数列的求和公式Sn=n(n+1)/2

【1+9999】+【2+9998】、、、、=10000乘【9999-1】除以2=49990000

(999999+1)*999999/2=499999500000

499999500000
首项加末项乘以项数除以二