已知数列{an}为等差数列,公差d≠0,其中ak1,ak2,…,akn恰为等比数列,若k1=1,k2=7,k3=19,求k1+k2+…

问题描述:

已知数列{an}为等差数列,公差d≠0,其中ak1,ak2,…,akn恰为等比数列,若k1=1,k2=7,k3=19,求k1+k2+…

ak1=a1,ak2=a7=a1+6d,ak3=a19=a1+18d∵ak1、ak2、ak19为等比数列∴a1×(a1+18d)=(a1+6d)^2又有d≠0,所以可以化简得:a1=6d所以an=a1+(n-1)d=(n+5)d所以ak1=a1=6d,ak2=a1+6d=12d,ak3=a1+18d=24d则等比数列ak1,ak2,…,...