证明∫( 0,π/2 ) (f sin x/(f sin x+f cos x) dx=π /4

问题描述:

证明∫( 0,π/2 ) (f sin x/(f sin x+f cos x) dx=π /4

积分值=(变量替换x=pi/2-t)积分(0到pi/2)f(cosx)/(f(sinx)+f(cosx)),两者相加(就是两倍的积分值),被积函数是1,故积分值是pi/2,因此原积分值是pi/4