计算.(1)a+b+2b2a−b;(2)(x+1−3x−1)÷x+22x−2;(3)(2+1a−1−1a+1)÷(a−a1−a2),其中a=2.

问题描述:

计算.
(1)a+b+

2b2
a−b

(2)(x+1−
3
x−1
x+2
2x−2

(3)(2+
1
a−1
1
a+1
)÷(a−
a
1−a2
)
,其中a=2.

(1)a+b+

2b2
a−b

=
(a+b)(a−b)
a−b
+
2b2
a−b

=
a2+b2
a−b

(2)(x+1−
3
x−1
x+2
2x−2

=[
(x+1)(x−1)
x−1
-
3
x−1
2(x−1)
x+2

=
(x+2)(x−2)
x−1
×
2(x−1)
x+2

=2x-4;
(3)(2+
1
a−1
1
a+1
)÷(a−
a
1−a2
)

=[
2(a+1)(a−1)
(a+1)(a−1)
+
(a+1)
(a−1)(a+1)
-
a−1
(a+1)(a−1)
]÷[
a(a+1)(a−1)
(a+1)(a−1)
+
a
(a+1)(a−1)
]
=
2a2
(a+1)(a−1)
×
(a+1)(a−1)
a3

=
2
a

把a=2代入原式得:原式=
2
a
=1.
答案解析:(1)根据分式运算法则进行通分,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
(2)首先将括号里面进行通分,进而化简即可;
(3)首先将括号里面进行通分,进而化简求值即可.
考试点:分式的化简求值;分式的混合运算.
知识点:此题主要考查了分式的化简求值,正确根据分式的性质进行化简得出是解题关键.