计算.(1)a+b+2b2a−b;(2)(x+1−3x−1)÷x+22x−2;(3)(2+1a−1−1a+1)÷(a−a1−a2),其中a=2.
问题描述:
计算.
(1)a+b+
;2b2
a−b
(2)(x+1−
)÷3 x−1
;x+2 2x−2
(3)(2+
−1 a−1
)÷(a−1 a+1
),其中a=2. a 1−a2
答
(1)a+b+
2b2
a−b
=
+(a+b)(a−b) a−b
2b2
a−b
=
;
a2+b2
a−b
(2)(x+1−
)÷3 x−1
x+2 2x−2
=[
-(x+1)(x−1) x−1
]×3 x−1
2(x−1) x+2
=
×(x+2)(x−2) x−1
2(x−1) x+2
=2x-4;
(3)(2+
−1 a−1
)÷(a−1 a+1
),a 1−a2
=[
+2(a+1)(a−1) (a+1)(a−1)
-(a+1) (a−1)(a+1)
]÷[a−1 (a+1)(a−1)
+a(a+1)(a−1) (a+1)(a−1)
]a (a+1)(a−1)
=
×2a2
(a+1)(a−1)
(a+1)(a−1) a3
=
,2 a
把a=2代入原式得:原式=
=1.2 a
答案解析:(1)根据分式运算法则进行通分,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
(2)首先将括号里面进行通分,进而化简即可;
(3)首先将括号里面进行通分,进而化简求值即可.
考试点:分式的化简求值;分式的混合运算.
知识点:此题主要考查了分式的化简求值,正确根据分式的性质进行化简得出是解题关键.