计算不定积分∫根号下(4-x²)dx 注:4-x平方;dx在根号外

问题描述:

计算不定积分∫根号下(4-x²)dx 注:4-x平方;dx在根号外

令x=2cost,
∴dx=-2sintdt,sint=√[1-(x/2)^2]=(1/2)√4-x^2,t=arccos(x/2)
∫√(4-x^2)dx=∫2sint*(-2sint)dt
=2∫(cos2t-1)dt
=sin2t-2t+C
=(1/2)x√4-x^2-2arccos(x/2)+C

令x = 2sinφ,dx = 2cosφ dφ
∫ √(4 - x²) dx
= ∫ √(4 - 4sin²φ) • (2cosφ dφ)
= ∫ √(4cos²φ) • (2cosφ dφ)
= 4∫ cos²φ dφ
= 2∫ (1 + cos2φ) dφ
= 2[φ + (1/2)sin2φ] + C
= 2φ + 2sinφcosφ + C
= 2arcsin(x/2) + 2(x/2)√(4 - x²)/2 + C
= 2arcsin(x/2) + (x/2)√(4 - x²) + C

令x=2sint
则dx=2costdt
原式=∫2cost*2costdt
=2∫(1+cos2t)dt
=2[t+0.5sin2t]+C
=2t+sin2t+C
=2arcsin(x/2)+2*x/2*√(1-x^2/4)+C
=2arcsin(x/2)+x√(1-x^2/4)+C